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The Weibel instability in the quantum plasma case is treated by means of a fluidlike �moments� approach.
Quantum modifications to the macroscopic equations are then identified as effects of the first or second kind.
Quantum effects of the first kind correspond to a dispersive term, similar to the Bohm potential in the quantum
hydrodynamic equations for plasmas. Effects of the second kind are due to the Fermi statistics of the charge
carriers and can become the dominant influence for strong degeneracy. The macroscopic dispersion relations
are of higher order than those for the classical Weibel instability. This corresponds to the presence of a cutoff
wave number even for the strong temperature anisotropy case.
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I. INTRODUCTION

The field of quantum plasmas has been introduced long
ago �1,2� and is presently attracting renewed attention from a
variety of viewpoints. It was already confirmed that quantum
mechanical effects, e.g., electron tunneling and wave-packet
spreading, play a central role in the behavior of metallic or
semiconductor nanostructures of the next generation elec-
tronic devices �3–5�. Some astrophysical compact objects,
such as white dwarf or neutron stars, possess very high tem-
perature and strong quantum effects due to their large densi-
ties ��106 g /cm3� �6�. There have been recent studies in
quantum plasmas involving quantum turbulence �7�, quan-
tum analogs for the Harris sheet �8�, quantum models taking
into account spin �9,10�, stable solitary structures �11�, dark
soliton and vortices solutions �12�, variational structures for
the quantum Zakharov system �13�, as well as application of
quantum hydrodynamic equations for carbon nanotubes �14�.

The growing interest on quantum plasmas comes in part
from the recently introduced hydrodynamic equations
�15–17�, which are simpler in comparison to the kinetic de-
scriptions used in the original developments. However, the
Weibel instability �18� is usually treated in terms of kinetic
descriptions. The Weibel instability is one of the basic
plasma instabilities and is driven by an anisotropic velocity
distribution of plasma particles �18,19�. The quantum version
of the Weibel instability has been recently proposed �20–22�
on grounds of the dispersion relation for the Wigner-
Maxwell system, which is the quantum counterpart of the
Vlasov-Maxwell system. Therefore, the details of the insta-
bility are dependent on the precise form of the equilibrium
Wigner pseudodistribution function, in a similar way as the
traditional Weibel instability is partially dependent on the
exact form of the classical equilibrium distribution function.
The purpose of this paper is to overcome this condition by
means of a moment description for the quantum Weibel in-
stability. Recently, the classical Weibel instability was inves-
tigated by Basu �23� taking moments of the Vlasov-Poisson
system and the present work follows basically the same strat-

egy. Here, however, the starting point is the linearized
Wigner-Maxwell system. It is also interesting to verify to
what extent a fluidlike approach as the moment method is
able to capture the essentials of the Weibel instability, in the
quantum case. Some peculiar subtleties coming from the
quantum nature of the model equations will show up. The
transition from a kinetic to a fluidlike approach in a quantum
plasma model will be shown to reveal the quantum effects of
a different nature according to the density of the system, as
explained more thoroughly in the continuation.

Classical plasmas frequently have equilibrium distribution
functions anisotropic in velocity space �24–26�. In the con-
text of quantum plasmas, velocity anisotropy can arise at
least for laser plasmas and neutron stars. It is well known
�27� that anisotropic heating by resonant absorption can pro-
duce a Weibel-like instability in laser plasmas. Also, there is
experimental evidence of Weibel instability in laser-solid in-
teraction experiments �28�. In addition, in tunnel-ionized la-
ser plasmas there can be velocity anisotropy driven by a
varying laser polarization �29�. Quantum effects should be
more evident in the next generation of laser-solid interaction
experiments, where the densities are very high. For neutron
stars, it has been conjectured �30� that anisotropic heating
can arise in view of fast rotation, implying a strongly de-
formed neutrino sphere and anisotropic neutrino fluxes.
There are estimates �31� where the pole-to-equator neutrino
flux ratio can assume a value of 2. For these reasons, it is
important to have a better understanding of the Weibel insta-
bility taking into account quantum effects.

As examples of distinct equilibrium Wigner functions for
the quantum Weibel instability, one can have Maxwell-
Boltzmann or Fermi-Dirac functions, both with anisotropy in
velocity space. Using a moment description, there is some
lost of information, but more universal statements are made
available. As for any moments or fluid modeling, an intrinsic
limit of such an approach is in the closure of the equations.
Indeed, one is always faced with a system where the equa-
tion for the time evolution of the velocity moment of order n
depends on the velocity moment of order n+1. In this way
�23�, it happens that the moment approach is appropriate
only for long wavelength and large temperature anisotropy.
Moment descriptions have also been applied to cyclotron
wave-particle interaction �32�.
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This work is organized as follows. In Sec. II we construct
the general formalism of the moment equations using the
linearized Wigner equation. Assuming a large temperature
anisotropy, we derive the dispersion relation for the electro-
magnetic unstable modes of Weibel-type, which includes
quantum corrections appropriate for dilute systems. In Sec.
III we generalize the analysis for an anisotropic Fermi-Dirac
distribution. The fourth-order moment term provides in this
case a quantum correction term of a different nature in the
dispersion relation. Our quantum dispersion relations are dis-
cussed in Sec. IV. The analytical forms for the Weibel growth
rates are derived and plotted for representative highly dense
plasmas. A brief summary of the results is given in Sec. V.

II. BASIC EQUATIONS

Consider a quantum plasma with equilibrium Wigner
function f = f0�v� and no equilibrium electromagnetic field. If

f̃ = f̃�r ,v , t� and Ã= Ã�r ,v , t� denote the perturbations of the
equilibrium Wigner function and of the vector potential, then
the linearized Wigner equation �20� reads
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In the above equation, the summation convention is used in

some terms and it is assumed the Coulomb gauge � · Ã=0, as
well as the perturbed electrostatic potential is taken to be
zero. In addition, �=h / �2�� is the scaled Planck constant, −e
is the electron charge, and m is the electron mass. Further-
more, the treatment is restricted to transverse waves so that

Ã = A� exp�i�kz − �t�� , �2�

where k=kẑ is the wave vector and A� is a constant vector
satisfying k ·A�=0. In all calculations, � /�z is the only spa-
tial derivative which does not identically vanish. Also, the
equilibrium Wigner function is an even function of the ve-
locity components.

It is convenient to define the first, second, and third order
moments

ũx =
1

n0
� dvvx f̃�r,v,t� , �3�

P̃xz = m� dvvxvz f̃�r,v,t� , �4�

Q̃xzz = m� dvvxvz
2 f̃�r,v,t� , �5�

where n0=�dvf0�v� is the equilibrium density. From Eq. �1�,
after integrating by parts and taking into account the Cou-
lomb gauge as well as the parity properties of f0, one obtains
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which are exactly the same as Eqs. �10�–�12� from Basu’s

work �23�, in a different notation. In Eqs. �6�–�8�, Ẽx=

−�Ãx /�t and B̃y =�Ãx /�z are the x and y components of the
perturbed electric and magnetic fields, respectively. Also,

T� = �m/n0� � dvvz
2f0�v� , �9�

T� = �m/n0� � dvvx
2f0�v� �10�

are related to velocity dispersion along the x and z directions,
respectively.

The fact that the moment equations following from the
�quantum� Wigner equation and the �classical� Vlasov equa-
tion are the same seems to be a puzzle. Some quantum con-
tribution should survive, otherwise both classical and quan-
tum dispersion relations would be the same. The key to solve
the puzzle is hidden in the fourth-order moment term at Eq.
�8�. This term is neglected in the pure classical case, but in
the following it is shown that this cannot be taken for granted
in the quantum case.

To estimate the fourth-order moment term at Eq. �8�, one
uses the linearized Wigner equation to find

�

�t
� dvvxvz

3 f̃�r,v,t� =
e

m
B̃yI +

en0�2T�

4m2

�2B̃y

�z2 , �11�

where

I =� dv�vz
4 − 3vx

2vy
2�f0�v� �12�

and the fifth-order moment �dvvxvz
4 f̃ was disregarded to ob-

tain closure of the system. In Eq. �11�, the term proportional
to �2 has a quantum nature, while the quantity I can be
shown to be negligible in the case of a Maxwell-Boltzmann
equilibrium. At this point, suppose that I produces only a
higher-order correction, an approximation to be checked in
more detail in Sec. III. Assuming I0 and Fourier trans-
forming with all quantities proportional to exp�i�kz−�t�� in
Eqs. �6�–�8�, �11�, and in Faraday and Ampère laws, there
follows the dispersion relation

�2 − c2k2 − �p
2	1 +

k2T�

m�2 �1 +
�2k4

4m2�2�
 = 0, �13�

where �p= (n0e2 / �m�0�)1/2 is the plasma frequency and c the
speed of light. Equation �13� is the same as Eq. �22� of Ba-
su’s work �23�, but now with the extra quantum term propor-
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tional to �2. Notice that the final result is independent of T�,
a fact which is consistent with an extreme temperature an-
isotropy assumption �T��T��.

Until now the treatment is completely general, with no
particular assumption on the form of the equilibrium distri-
bution function, as long as I in Eq. �12� can be disregarded.
In this sense, the instability follows from temperature aniso-
tropy, whatever the exact form of the equilibrium distribution
function. Nevertheless, in Sec. III it is shown that for ex-
treme degenerate Fermi gases one is obliged to fully keep the
fourth-order moment contribution, including the term I
which would be not negligible anymore. This leads to a
modified dispersion relation, useful for very dense plasmas
such as in astrophysical objects as white dwarfs and neutron
stars as well as in laser-solid plasma interaction experiments.
It can be said that the quantum correction in the second term
at the right-hand side of Eq. �11� is always present and that
an additional quantum correction coming from extreme den-
sities can also manifest through the term I, fairly negligible
for classical plasma. Modifications arising from the disper-
sive term ��2 at Eq. �11� will be referred to in the present
context as �quantum� effects of the first kind, while the con-
tribution from the I integral will be called a perturbation of
the second kind.

In order to compare the dispersion relation �13� to previ-
ous work on the quantum Weibel instability, one can insert
the extreme anisotropic equilibrium distribution function

f0 =
n0m

2�T�

��vz�exp	−
m

2T�

�vx
2 + vy

2�
 �14�

into the Wigner-Maxwell system as it is presented, for in-
stance, in Ref. �20�. After linearizing and Fourier transform-
ing, the result is

�2 − c2k2 − �p
2	1 +

k2T�

m�2 �1 −
�2k4

4m2�2�−1
 = 0, �15�

which is the same as Eq. �13� provided �2k4 / �4m2�2��1, in
accordance with the long wavelength approximation. If one
proceeds with Eq. �15�, one would also obtain the dispersion
relation shown in Eq. �29� of Ref. �20�. Hence, the moment
and the kinetic theory approaches give the same results, pro-
vided there is sufficient temperature anisotropy and the long
wavelength assumption is valid.

III. ANISOTROPIC FERMI-DIRAC EQUILIBRIUM

It should be observed that quantum effects in plasma can
be taken into account in at least two ways. On one hand, a
quantum transport equation can be the starting point. In this
work, the role of the quantum transport equation is played by
the linearized Wigner equation �1�. Unlike Vlasov’s equa-
tion, the Wigner equation is able to model quantum phenom-
ena such as tunneling and wave-packet spreading. On the
other hand, quantum effects can be incorporated by means of
an equilibrium distribution reflecting the spin of the charge
carriers. This second avenue is pursued in this section, where
radical departures to the dispersion relation are found, espe-
cially for strongly degenerate systems.

In the previous section, the quantity I at Eq. �12� was
neglected and the dispersion relation �13� was obtained. The
purpose of this section is to investigate more closely the
assumption on the smallness of I. In order to have closure of
the moment equations, it is unavoidable to add some hypoth-
esis on the equilibria. As will be shown, it is not generically
true that I can be neglected. Indeed, one can consider the
equilibrium Wigner function appropriate for an anisotropic
Fermi-Dirac distribution �21�,

f0 =
	

exp	m

2
�vx

2 + vy
2

T�

+
vz

2

T�

� − 
�
 + 1

, �16�

where � is the chemical potential and 	 is a normalization
constant,

	 = −
n0

Li3/2�− e
���m


2�
�3/2

= 2� m

2��
�3

. �17�

In Eq. �17�, Li3/2 is a polylogarithm function �33�. In addi-
tion, 
=1 / ��T�

2 T��1/3�, with the temperatures T� and T� mea-
sured in terms of the Boltzmann constant. If T�=T�, the stan-
dard Fermi-Dirac statistics is recovered. The Fermi statistics
is unavoidable in the case of degenerate Fermi gases, as in-
tense laser generated plasmas or compact astrophysical ob-
jects. Dilute systems �e
��1� are fairly well treated by the
Maxwell-Boltzmann equilibrium. Notice that Eq. �16� is not

the more usual Fermi-Dirac distribution f̂�k�, where k is the
appropriated wave vector in momentum space, but the asso-
ciated equilibrium Wigner function. These objects are related

by f̂�k�= �1 /2��2�� /m�3f0�v�, with the factor 2 coming from
spin �34,35�. Another distinctive feature is that here tempera-
ture anisotropy is allowed.

Inserting Eq. �17� into Eq. �12�, the result is

I =
3n0T��T� − T��

m2

Li7/2�− e
��
Li3/2�− e
��

, �18�

where Li7/2 is another polylogarithm function. In the particu-
lar case of dilute systems, using the properties of the poly-
logarithm function, the last equation reduces to

I =
3n0T��T� − T��

m2 , �19�

which is equivalent to Eq. �23� of �23�. In the general case,
proceeding as before but retaining the I contribution, there
follows the dispersion relation

�2 − c2k2 − �p
2�1 +

k2T�

m�2 	1 +
3k2T��T� − T��

m�2T�

Li7/2�− e
��
Li3/2�− e
��

+
�2k4

4m2�2
� = 0. �20�

By inspection, and taken into account the strong anisotropy
assumption �T��T��, the dispersion relation �20� is equiva-
lent to the previous one Eq. �13� provided,

MACROSCOPIC DESCRIPTION FOR THE QUANTUM… PHYSICAL REVIEW E 77, 046404 �2008�

046404-3



�2

k2v�
2 �

Li7/2�− e
��
Li3/2�− e
��

, �21�

where v� = �T� /m�1/2 is the characteristic speed associated to
T�. While Eq. �21� is automatically satisfied for dilute sys-
tems due to the long wavelength approximation, the same is
not true for a strongly degenerate Fermi gas. For instance, for

��200, the right-hand side of Eq. �21� is as large as 4500,
so that the contribution coming from quantum statistics can-
not be neglected at Eq. �20�. This modified dispersion rela-
tion can be useful for a better understanding of the Weibel
instability in very dense plasma systems. However, it is a
macroscopic relation not so easily comparable to kinetic
�Wigner-Maxwell� relations. This is the case, since the an-
isotropic Fermi-Dirac equilibrium �16� is not easily ame-
nable to analytic results even for extreme temperature aniso-
tropy. However, the analytical difficulties of the kinetic
dispersion relation arising from Eq. �16� are just one reason
more to emphasize the relevance of the macroscopic equa-
tion �20�.

IV. NUMERICAL SOLUTIONS AND DISCUSSIONS

To find the Weibel solutions of Eqs. �13� and �20� one
should observe that both equations are of third order in �2.
For physically reasonable parameters, there are one real and
two complex solutions. As for classical plasma, the complex
solutions can be taken in the form of purely growing or
evanescent modes, according to �= ıI���= ı� with ��� usu-
ally small, �� � ��p. Therefore, the first term in both Eqs.
�13� and �20� can be neglected for the purpose of calculating
the Weibel growth rate.

Here, one first restrict to the quantum effects described by
Eq. �13� from which there follows the fourth-order disper-
sion relation

� c2k2

�p
2 + 1��4 −

k2T�

m
��2 −

�2k4

4m2 � = 0, �22�

which admits four aperiodic solutions given analytically by

�2 =
k2T�

2m
� c2k2

�p
2 + 1�−1�1  	1 −

�2k2

mT�
� c2k2

�p
2 + 1�
1/2� ,

�23�

which exist as long as the wave number is less than a cutoff
value, k�kc. The cutoff value is given by the existence con-
dition for the square root in Eq. �23�,

kc
2 =

�p
2

2c2	�1 +
4T�mc2

�2�p
2 �1/2

− 1
 . �24�

For a complete characterization of the Weibel instability,
we plot the growth rates in Fig. 1: the dashed bold lines are
the aperiodic solutions of Eq. �13� and the solid lines the
aperiodic solutions of Eq. �22� from Basu �23�. It has been
chosen as a representative case of a metallic gold plasma
�36� with density n0=1028 m−3 and two temperatures �a�
T�=2.5 eV, and �b� T�=25 eV. One can assume sufficiently
large anisotropies, T� /T� =100�1000, so that the parallel

temperature is close to the room temperature, T� �0.025 eV.
In addition, the dotted line 1 is given by the condition

�� / �kv�� � =1 introduced in Basu’s Vlasov model �23� for the
strong temperature anisotropy approximation. This curve
limits to its left side, �� / �kv�� � �1, the existence of the mac-
roscopic Weibel modes, and their fluid approach using Eq.
�22� from Ref. �23�. On the other hand, the dotted line 2 is
given by �2k4 / �4m2�2�=1 being less restrictive, and limits to
its left side, �2k4 / �4m2�2��1, the moment description of the
quantum Weibel modes by using Eq. �13�. In practice it ex-
cludes the lower modes �dotted lines 2 in Figs. 1�a� and 1�b��
as unphysical. In addition, the existence of Weibel modes is
limited here only to the wave numbers smaller than a cutoff
value, k�kc. This cutoff wave number is projected with the
dotted line in Fig. 1�b�, and it should be given by the condi-
tion for a maximum wave number, dk /d�=0. Imposing this
condition to the last dispersion relation �22� one finds

�c
2 = �p

2 kc
2T�

m�c2kc
2 + �p

2�
. �25�

The cutoff wave number, kc, and the corresponding growth
rate �c are solutions of Eq. �22�, and therefore replacing Eq.
�25� in Eq. �22� yields exactly Eq. �24�. This can be used to
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FIG. 1. The dashed bold lines are the Weibel growth rates ob-
tained from the dispersion relation �13� for a metallic �gold� plasma
with n0=1028 m−3 and two temperatures �a� T�=2.5 eV and �b�
T�=25 eV. In contrast to the classical theory of Basu �solid lines�,
the aperiodic solutions of Eq. �13� are limited to wave numbers
k�kc by the quantum effects of the first kind. The dotted lines 1
and 2 are given by the conditions �� / �kv�� � =1 and �2k4 / �4m2�2�
=1, respectively, which are explained in the text.
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evaluate, for example, in Fig. 1�b� the cutoff wave number
scaled as ckc /�p�21.1. Concluding, Eq. �13� admits four
aperiodic solutions for each wave number k�kc.

The other two solutions of Eq. �13� are real and are plot-
ted in Fig. 2, corresponding to �� � ��p. These electromag-
netic modes are superluminal and approach the electromag-
netic plasma modes described by �2=�p

2 +c2k2, for
increasing k. However, since these solutions have � /k�c,
they undergo no collisionless damping or growing. Also we
remark that the dispersion properties of these superluminal
plasma waves do not change too much in the quantum ap-
proach, for physically relevant choices of parameters.

In Eq. �13�, the quantum corrections of the first kind are
proportional to T� and hence to temperature anisotropy. This
is because the nature of this modification comes from wave-
packet spreading. In an opposite way, in Eq. �20� the quan-
tum corrections of the second kind are connected to wave-
packet overlap, since, for extreme temperature anisotropy,

3k2T��T� − T��
m�2T�

Li7/2�− e
��
Li3/2�− e
��

�
3k2T�

m�2

Li7/2�− e
��
Li3/2�− e
��

,

which becomes bigger for larger densities. Therefore, this
contribution becomes more evident for increasing degen-
eracy.

One may look in the same manner to the unstable solu-
tions of Eq. �20�,

�2 =
k2T�

2m
� c2k2

�p
2 + 1�−1

� �1  	1 − �12 T��T� − T��
T�

2

Li7/2�− e
��
Li3/2�− e
��

+
�2k2

mT�
�

�� c2k2

�p
2 + 1�
1/2� , �26�

which characterize the equilibrium of an anisotropic Fermi-
Dirac distribution by including the quantum effects of the
second kind. The Weibel growth rates are plotted in Fig. 3
for two very large temperature anisotropies. The dashed bold
lines are the aperiodic solutions of Eq. �20� and, for compari-

son, the solid lines are the classical Weibel-like solutions of
Eq. �22� from Basu �23�. In this case, the quantum effects of
the second kind limit the existence of the unstable modes to
smaller wave numbers k�kc,2�kc,1, where kc,2 follows from
Eq. �26�,

kc,2
2 =

�p
2

2c2�	�1 −
12mc2T��T� − T��

�2�p
2T�

Li7/2�− e
��
Li3/2�− e
���

2

+
4T�mc2

�2�p
2 
1/2

− 1� , �27�

and referring to kc,1 as those wave numbers defined in Eq.
�24�, arising from the quantum effects of the first kind.

In the above calculations, only a moderately degenerate
plasma has been considered, with 
��5. Otherwise, for a
strongly degenerate one, for instance, with 
��200, the
aperiodic solutions are completely suppressed, except for un-
realistic temperature anisotropies �T� /T� �500�.

V. CONCLUSION

The transition from a kinetic to a fluidlike model in the
case of the quantum Weibel instability presents more particu-
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4
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p

p

FIG. 2. The solid lines are the superluminal waves �no damping
and no growing, I���=0� described by Eqs. �13� and �20�. In this
case the wave dispersion is not affected by quantum effects. The
dashed lines are the light waves.
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FIG. 3. With dashed bold lines are shown the Weibel growth
rates obtained from the dispersion relation �20� for a moderately
degenerate plasma with n0=1033 m−3 and 
��5, and for two tem-
perature anisotropies �a� T� /T� =100 and �b� T� /T� =500. Compar-
ing to the classical theory of Basu �solid lines�, the aperiodic solu-
tions of Eq. �20� are even more limited to wave numbers k�kc,2

�kc,1 by the quantum effects of the second kind.

MACROSCOPIC DESCRIPTION FOR THE QUANTUM… PHYSICAL REVIEW E 77, 046404 �2008�

046404-5



larities than one could expect at first sight. Equation �11�,
obtained after retaining terms up to the fourth-order moment
of the equilibrium and perturbed Wigner functions, offers the
best way to understand these subtleties. The second term at
the right-hand side of Eq. �11� is a dispersive term which is
always present and is reminiscent of the Bohm potential term
of the quantum hydrodynamic model �16�. Since it is univer-
sal, here it was identified as a quantum effect of the first
kind. However, for sufficiently large densities, the term pro-
portional to I in Eq. �11� can become the dominant quantum
influence, as made clear in Sec. III. In fact, the cutoff wave
number for instability becomes much smaller for increasing
degeneracy reflected in these quantum effects of the second

kind. The present work can be relevant not only for applica-
tions of Weibel-like instabilities in quantum plasmas as in
intense laser-solid interaction experiments, but also as a step
toward a better conceptual understanding about the origin of
the Bohm potential in quantum plasma fluid models, as well
as about the transition from kinetic to fluid descriptions for
quantum plasmas.
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